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The overarching goal of the NACHOS program is to demonstrate semiconductor lasers that have volume sizes no larger than the cubic of the 
wavelength in vacuum and can operate at room temperature under electrical injection in continuous-wave mode. Our team has successfully 
achieved this goal using the semiconductor-metal core-shell design. A secondary goal is to achieve an output power of 2 microwatts under 
the above operating conditions. We have so far achieved 20 microwatts at 260K and the power scaling indicates that this secondary goal is 
realizable in the next few months, well within the period of no-cost extension. In addition, many other novel device designs and fabrication 
approaches have been explored, showing great promises as alternatives to the core-shell design with other appealing features. The overall 
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Summary: The overarching goal of the NACHOS program is to demonstrate semiconductor 
lasers that have volume sizes no larger than the cubic of the wavelength in vacuum and can 
operate at room temperature under electrical injection in continuous-wave mode. Our team has 
successfully achieved this goal using the semiconductor-metal core-shell design. A secondary 
goal is to achieve an output power of 2 microwatts under the above operating conditions. We 
have so far achieved 20 microwatts at 260K and the power scaling indicates that this secondary 
goal is realizable in the next few months, well within the period of no-cost extension. In addition, 
many other novel device designs and fabrication approaches have been explored, showing great 
promises as alternatives to the core-shell design with other appealing features. The overall 
project consists of several individual tasks with progress detailed in the following pages.   
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II.3 Theoretical Modeling and Simulation: Ultimate Size Limit of a Plasmonic Nanolaser 

During the course of this project, simulation and modeling was an integral part of the project 
execution and played an important role in predicting and analyzing the ultimate potential of 
device performance. One of the important results is the possibility of doing plasmonics without 
metals which are lossy and 
difficult to produce with 
high quality. Our analysis 
shows that InAs 
heterostructures is the best 
material choice and can 
potentially realize plasmon 
resonance in the near-
infrared [10]. Furthermore, 
such all-semiconductor 
approach allows ready 
integration of active and 
passive components using 
pure epitaxial growth with 
minimal loss. Another 
predication of our 
modeling is the ultimate 
size limit of a plasmonic 
nanolaser [9]. We find that 
there is an interesting 
interplay between the facet 
loss and the SPP 
propagation loss and that such interplay leads to the existence of a minimum-threshold mode in 
each mode group. The red-shift of the minimum-threshold mode with the decrease of device 
thickness leads to a further reduction of threshold gain, making the threshold for the SPP 
nanolaser achievable for many semiconductors, even at room temperature. In addition, we find 
that the threshold can be further reduced by using thinner metal cladding without much 
exacerbated mode leakage. Finally, a specific design example (see Fig. II.6) is optimized using 
Al0.3Ga0.7As/GaAs/Al0.3Ga0.7As single quantum well sandwiched between silver layers, which 
has a physical volume of 1.5 × 10-4

λ30, potentially the smallest semiconductor nanolasers 
designed or demonstrated so far. 
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Figure II.6 (a) Schematic structure of an optimized MISIM nanolaser. (b) 
Intensity spectrum of the nanolaser within the gain bandwidth of 
AlGaAs/GaAs/AlGaAs quantum well showing two possible modes. (c) 
Near field energy density pattern of the TM014 mode at lasing threshold 
in the x-z plane. (d) Angular dependence of the far field |E|2 radiation 
pattern of the TM014 mode at the lasing threshold in the z-x plane. 
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structure that simultaneously supports optical resonances. Here, metal-optics provides an 
attractive feedback mechanism for small lasers because it offers small mode volumes [5–7]. In 
this case, metal contacts can then conveniently double as optical reflectors. By embedding 
nanopillars in a metal-optic cavity (see Figs. IV.1(c) and 1(d)), we have now achieved amplified 
spontaneous emission driven by electrical bias. To test the devices, samples were wire bonded 
onto chip carriers mounted inside a liquid helium cryostat with optical access. Electrical 
feedthroughs connected devices to a pulse generator in the external environment. 20 ns pump 
pulses with a 10 µs period were delivered in these experiments. An objective collected 
electroluminescence (EL), which was then relayed to a spectrometer and CCD for detection.  

Cavity peaks can be seen superimposed on a broad spontaneous emission background under 
high injection levels (up to 700 µA) as shown in Fig. IV. 3(a). In order to ascertain the origin of 
the EL peaks, temperature dependence studies were carried out. The shift versus temperature of 
the purported cavity peaks and the overall EL spectrum are plotted in Fig. IV.3(b). Notably, 
peaks A, B, C, and D all shift at the same rate, while the overall EL spectrum (X) shifts more 
strongly. This can be explained by the 

stronger temperature dependence of band gap energy compared to refractive index. When 
plotting the wavelength shifts as percentages as in Fig. IV. 3(c), we can compare our results to 
well-known and existing models. We find that the ASE peaks shift at a rate corresponding to a 
typical GaAs thermo-optic coefficient of dn/dT=2.67x10-4, thereby substantiating their origin 
from cavity modes since optical resonances are linearly dependent on refractive index. 
Meanwhile, peak X follows the Varshni model known for describing the temperature 
dependence of semiconductor band gaps. We note that there is a deviation from the Varshni 
model at higher temperatures, which is a topic of future investigation. From other analyses, we 
found that we currently achieve a material gain of 3,400 cm-1. This agrees with the exceptional 
electrical properties we have observed. Device dark current is only 1.2 pA and 0.45 nA at 0 V 
and -1 V, respectively. Nanopillar devices have textbook IV characteristics with nearly-ideal 

Fig. IV.3. (a) Electrically-injected emission spectra show several ASE peaks (A-D) superimposed upon a
broad spontaneous emission background (X). Temperature dependence studies were done to verify the origin
of these peaks. (b) Spontaneous emission (X) shifts more quickly with temperature than the purported cavity
peaks (A-D), which shift in parallel with one another. (c) This can be explained by the different temperature
dependences of band gap energy and refractive index, which determine energy shifts of spontaneous emission
and cavity resonances, respectively. We find that peak X follows the Varshni model for energy band gaps,
while peaks A-D follow a typical GaAs thermo-optic coefficient of dn/dT=2.67x10-4. We thereby confirm our
attribution of observed spectral peaks to ASE.
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ideality factors of 2. A material gain of 3,400 cm-1 is sufficient for reaching typical lasing 
thresholds; thus, our structure is presently limited by insufficient optical feedback or Q. 
Nonetheless, the observation of ASE from nanopillars grown on silicon is a major step towards 
realizing the ultimate monolithic silicon-based light source. 
 
IV.4 Outlook  
As computing power continues to centralize in the form of data centers, chip-level data transport 
capacity becomes increasingly critical. Using silicon nanophotonics to implement low-power 
optical interconnects is a promising approach to solving impending bandwidth limitations. To 
offer advantages over electrical interconnects, optical devices must be extremely efficient, and 
their integration onto Si has to be highly scalable. Nanolasers such as the ones presented above 
therefore offer an extremely attractive solution. With subwavelength physical volumes, 
nanolasers minimize power consumption while still achieving strong monochromatic emission, 
though sufficient power and beam control remain areas requiring further development. On a 
higher level, the variety of nanolasers achieved by our team has created a class of photonic 
devices opening new functionality beyond the scope of traditional lasers. Controllably 
interfacing photons with nanoscale matter such as atoms, molecules, nanoparticles, and 
fullerenes is no longer a fantasy, but instead a reality on the horizon. 
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Addendum-2013-Part I 
 

NACHOS Report: Plasmonic Nanolasers  (CunZheng Ning) 
 
 

1. Executive Summary 
 
Metallic and plasmonic based nanostructures promise to allow miniaturization of photonic 
devices down to unprecedented levels. The efforts reported here covers the electrical injection 
plasmonic-semiconductor nanolasers and plasmonic emitters. Major achievements involve the 
first realization of a nanolaser with size smaller than wavelength in vacuum in all three 
dimensions, operating at room temperature under electrical injection. The team remains the only 
group in the world capable of doing this almost a year after they achieved these critical 
milestones. Several other interesting devices were also demonstrated for the first time during the 
period of performances including the first electrical injection, direct generation of an azimuthally 
polarized laser light, and the first demonstration of electrical injection light emission from an 
integrated semiconductor-metallic bowtie structure. These demonstrations illustrate the great 
potential of plasmonic-semiconductor nanostructures in their versatility for many other 
applications.    
  The novelty of our research and significance of progress made were also evidenced by great 
attention our research received from technology and popular press, including interviews, news 
reports, and press highlights in many journals, magazine, and websites. Following pages contain 
more detailed description of progress made and the major results.  
 

2. Background 
Nanophotonics deals with generation, control, and manipulation of photons at nanometer scale 
with eventual goals of achieving photonic integrated systems on a chip and the final grand 
integration with electronics on a chip. To achieve such a system on a chip, it is critical to achieve 
various light sources and other active devices at nanometer scale on a chip. Surface-plasmon 
polariton (SPP) formation is one of the most important mechanisms to confine light at nanometer 
scale for detection, sensing, and communication, and thus has become one of the most critical 
elements for on-chip photonic integrated system.  During the performance period, research was 
carried out to develop an electrical injection SPP hotwire sources and plasmonic nanolasers.    

Surface	Plasmon	Polariton	and	its	generation	
With the rapid progress in nanoscale fabrication capability and in our understanding of the 
interaction between light field and nano-metallic structure, it has become possible to design and 
fabricate truly nanophotonic devices to confine optical field in an extremely small space 
dimensions, on the order of a small fraction of the wave-length of the corresponding dielectric 
medium. One of the very prominent examples of such capability is the first demonstration of a 
semiconductor nanolaser with a thickness below the diffraction limit, carried out by the PI’s 
group and his collaborators. However, the demonstrated nanoscale lasers could only operate at 
very low temperature. It is extremely important for many practical applications to be able to 
operate such nanolasers at room temperature. In addition, among the metallic structures proposed 
to confine light field or generate plasmonic near field sources, metallic bowtie pairs are shown to 
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be able to confine light in the smallest space and with the highest field enhancement between the 
bowtie tips. Though bowtie structures have been studied quite extensively, lack of a device 
concept and a method of fabrication to integrate bowtie structure with active materials in a 
reproducible manner and in a controllable way prevent these advantages from being incorporated 
into device applications. Moreover, the current prevailing method of generating such SPP modes 
is using optical pumping. The requirement of phase matching and a large external pump laser 
required makes optical generation intrinsically incompatible with the intended future on-chip 
applications. Thus the focus of our research in the area of plasmonic nanoemitters is to achieve 
room temperature operation of a nanolaser under electrical injection and on electrical injection 
operation of bowtie emitters as a potential plasmonic source.  

 
3. Description of Major Research Results 

 
3.1 First Room Temperature Electrical Injection Nanolaser finally Demonstrated: 

Achieving electrical injection nanolasers with a size smaller than wavelength in 3D capable of 
operating at room temperature has been a goal actively pursued worldwide over the laser few 
years. Due to the small size of such nanolasers, the fabrication precision required is extremely 
challenging to achieve high quality devices, capable of room temperature operating. We are the 
first group to finally achieve this long sought goal recently, as shown in Fig.1. So far nearly 9 
months after the publication of our results, we are still the only group being able to do this. The 
results have been widely reported world-wide by tech press and news media in general. This 
achievement represents a major milestone in the development of metallic cavity nanolasers and 
in terms of possible real world application of such nanolasers. Currently similar research is 
actively pursued worldwide.  

 
Figure 1 Room temperature perating characteristics of a semiconductor metallic cavity nanolaser of 
subwavelength in size. Left: L-I curve (left axis) and linewidth vs. current (right axis) showing the standard 
threshold behavior of linewidth reduction with pumping current with the narrowest linewidth around 0.5 nm. 
This is the smallest linewidth demonstrated for a metallic cavity nanolaser. The L-I curve is plotted on log-log 
scale in the middle panel, showing the typical S-curve. The right panel shows the spectra at increasing 
pumping levels. All three panels show convincingly that the lasing has occurred in such a laser. The size of 
this laser: 1.15 (W) × 1.39 (L) × 1.5 (H) µm3 = 0.67 λ3 (λ=1591 nm).  
 
During the period of the performance, we have been leading the community over the last few 
years with either the smallest electrical injection lasers, or operating at the highest temperature. 
Various other interesting results were obtained also including the first purely electrical injection 
azimuthally polarized laser source. Our results have been published in several research papers 
and in various invited review articles as listed in the following:  
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 Ding K, Hill MT, Liu ZC, Yin LJ, Veldhoven PJV, Ning C.Z., Record performance 
of electrical injection sub-wavelength metallic-cavity semiconductor lasers at 
room temperature, Opt. Express, 21, 4728-4733(2013) 

 K. Ding and C. Z. Ning, Metallic subwavelength-cavity semiconductor nanolaser. 
(an invited review). Light: Science and Applications, 1(7),e20(2012); 
doi:10.1038/lsa.2012.20 

 D. Li and C.Z. Ning, Interplay of various loss mechanisms and ultimate size limit 
of a surface plasmon polariton semiconductor nanolaser, Opt. Exp., 20, 16348-
16357 (2012) 

 K. Ding, Z.C. Liu, L.J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. 
Nöetzel, C.Z. Ning, Room Temperature Continuous Wave Lasing in Deep-
Subwavelength Metallic-Cavities under Electrical Injection, Phys. Rev. B85 
(Rapid Communication), 041301(2012) 

 K. Ding, Zhicheng Liu, Leijun Yin, Hua Wang, Ruibin Liu, Martin T. Hill, Milan J. 
H. Marell, Peter J. van Veldhoven, Richard Nötzel, and C. Z. Ning, Electrical 
injection, continuous wave operation of subwavelength-metallic cavity lasers at 
260 K, Kang, Appl. Phys. Lett., 98, 231108, 2011. 

 K. Ding and C.Z. Ning, Fabrication challenges of electrical injection metallic cavity 
semiconductor nanolasers (invited paper), Semicond. Sci. Technol., accepted, (2013) 

 K. Ding, M. Hill, Z.C. Liu, L. J. Yin, P. J. van Veldhoven, and C.Z. Ning, An 
electrical injection metallic cavity nanolaser with azimuthal polarization Lasers, 
Appl. Phys. Lett., 102, 041110 (2013); doi: 10.1063/1.4775803 

 
3.2 Electrical injection metallic-semiconductor bowtie plasmonic emitters demonstrated:  
Bowtie structure has been a prototype of a plasmonic emitter due to the strong enhanced field 

Figure 2: Left: schematic of the electrical injection metallic bowtie plasmonic emitter; Middle: schematic 
of the cross section (top) and simulated field distribution (bottom); Right panel: SEM image of 
semiconductor bowtie pillar (top) and L-I curve of experiment measurements of the light output from the 
side after cutting by a focused ion beam from the side.  
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near the bowtie tips. But the effectiveness of such structure requires the active gain medium be 
positioned in between the bowtie tips. Such an arrangement represents a fabrication challenge. 
So far people have not been able to do this reliably by other bottom-up approaches. While 
carrying out our plasmonic nanolaser research, we realized that a one-step fabrication based on 
top-down lithography could allow the fabrication of the metallic bowtie structure and the 
integration with gain medium, potentially allowing such structures be fabricated using standard 
device fabrication tools and processes.  Fig. 2 (right) shows a scanning electron microscope 
(SEM) image of a semiconductor pillar etched from an InP/InGaAsP wafer. The bowtie-shaped 
groves etched into semiconductor pillar will serve as a template for later deposition of metals 
(such as Au and Ag), so that metallic bowtie pairs will be formed in the middle of the pillar, 
where wafer growth defines semiconductor gain region between and around bowtie tips, creating 
a closely and precisely positioned and strongly coupled metal-semiconductor bowtie system, 
ideal for generating intense SPP near field. Since the InP wafer has built-in doped and contact 
layers, electrical injection can be readily accomplished, leading to a natural on-chip SPP 
generation without the need of bulk optical pumping. We have recently used the similar 
fabrication process to demonstrate the first ever sub-diffraction limit laser.  The light emission 
has been measured from such structure as shown in Fig. 2 (low right). For more info, see, K. 
Ding, H. Wang, M. T. Hill, and C. Z. Ning, Design and fabrication of an electrical injection 
metallic bowtie plasmonic structure integrated with semiconductor gain medium, App. Phys. 
Lett., 102, 041110 (2013); doi: 10.1063/1.4775803 

 
3.3 First demonstration of a nanolaser with azimuthal polarization: Light beams with 
various special polarizations have important applications such as polarized along radial or 
azimuthal directions. Typically such beams have to be generated by special gratings or by 
external polarization selection after devices been fabricated. For many applications, a single 
integrated device would be preferred. Our nanolasers with cylindrical symmetries (see Fig.3) are 

ideal for such polarized beam 
generation. We demonstrated for 
the first time an azimuthally 
polarized laser source from an 
electrically driven metallic cavity 
nanolaser with a physical cavity 
volume of 0.146 λ3 (λ = 1416 
nm). Single TE01 mode lasing at 
78 K was achieved by taking the 
advantages of the large free 
spectral range in such nanoscale 
lasers and the azimuthal 
polarization of lasing emission 
was verified experimentally (see 
Fig.4). Mode shift controlled by 
device cavity radius was observed 

over a large wavelength range from 1.37 µm to 1.53 µm. Such metallic cavity nanolaser provides 
a compact electrically driven laser source for azimuthally polarized beam. Fig.3 shows the 
schematic laser structure and the SEM image of the fabricated pillar. Fig. 4 shows the L-I curve 
(a) and spectrum (inset of (a)), the lasing mode shift with pillar diameter, and polarization 

Figure 3: (a) Structure of a metallic cavity nanolaser with circular
cross section. (b) Scanning electron microscope image of an
InP/InGaAs/InP nano-pillar coated with SiN layer on its sidewall.
We etched away the SiN on top of the pillar and deposited Ti/Pt/Au
thus forming the top n contact. Scale bar is 100 nm.
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resolved imaging. The dark line in the images along the direction of the polarizer is the evidence 
of the azimuthal polarization.  
 
 
4. Awards and Prizes 
 
    C.Z. Ning, Elected to Fellow of The Optical 
Society, 2012, due to significant contribution to 
nanophotonics 
   C.Z. Ning, Elected to be Fellow of IEEE, 2012, 
due to his significant contribution to nanophotonics 
C.Z. Ning, OSA Fellow Lecturer Award, 2013 
 
5. Invited Talks on the Research Results 
 

1) C.Z. Ning, Kang Ding, Recent Progress in 
Metallic Cavity Nanolasers, Invited Talk at 
IEEE Photonics Society Summer Topical 
Meetings, Hawaii, July 2013 

2) C.Z. Ning, Recent Progress in Metallic Cavity 
Nanolasers, invited talk at IEEE Photonics 
Society Annual Meeting (IPC), Seattle, WA, Sept 
7-12, 2013 

3) C.Z. Ning, Metallic Cavity Nanolasers: A New 
Paradigm for Semiconductor Lasers, invited 
Lecture at International Nano-Optoelectronics 
Workshop (iNOW), Aug 20-Aug 30, 2013, 
Corsica, France  

4) C.Z. Ning, K. Ding, D. B. Li, L.J. Yin, and Z.C. 
Liu, Surface Plasmonics and Metallic Cavity 
Nanolasers, invited talk at PIERS 2013, 

Stockholm, Aug 12-15 
5) C.Z. Ning, Plasmonic Nanolasers: A Paradigm Shift in Laser Physics, Physics 

Colloquium and SFB 787 Seminar, May 16, 2013 
6) C.Z. Ning, Plasmonic Nanolasers: Towards the Ultimate Miniaturization, Invited Talk, 

Semiconductor and Integrated OptoElectronics (SIOE) Conference April 9-11th 2013, 
Cardiff,UK  

7) C.Z.Ning, Loss Compensating and Lasing in Sub-wavelength Semiconductor-Metal 
Structures, Department of Physics, Imperial College London, UK, April 12, 2013 

8) C.Z. Ning, Plasmonic and Metallic Cavity Semiconductor Nanolasers, HP Lab, April 4, 
2013 

9) C.Z. Ning, Semiconductor Nanowires for Photonic Applications from Ultraviolet to 
Mid-infrared, ASU Nano Science Seminar Series, April 1, 2013 

10) C.Z. Ning, Nanolasers: Current Status of Trailblazer of Synergetics, International 
Symposium: Self-Organization in Complex Systems: The Past, Present, and Future 



 

6 
 

of Synergetics, (on the ocassion of Hermann Haken’s 85th birthday), Delmenhorst, 
Germany, Nov 13-16, 2012 

11) C.Z. Ning, Nanophotonics with Nanowires and Plasmonics, Keynote talk, at The 
SecondInternational Conference on Manipulation, Manufacturing and Measurement on the 
Nanoscale, 29 August –1 September2012, Xi'an, China 

12) C.Z. Ning, Nanophotonics with Nanowires and Plasmonic Shells, Hong Kang Polytech 
University, May 22, 2012 

13) C.Z. Ning, Photon-Plasmon Interactions and Subwavelength Nanolasers, Physics 
Colloquium, Shanghao Jiaotong University, May 30, 2012 

14) C.Z. Ning, Two-Photon Lasers in Semiconductors, talk at Physics Department, Shanghai 
Jiaotong University, May 30, 2012 

15) C.Z. Ning, Semiconductor Alloy Nanowires for Optoelectronic Applications from UV 
to IR, Seminar at School of Nanoscience and Technology, Suzhou University, Suzhou, 
China, June 4, 2012 

16) C.Z. Ning, Semiconductor Alloy Nanowires and Plasmonic Nanostructures for 
Nanophotonics, Colloquium of Department of Optoelectronics, Zhejiang University, 
Hangzhou, China, June 7, 2012  

17) C.Z. Ning, Photon-Plasmon Interactions and Subwavelength Nanolasers, Condensed 
Matter Seminar Series, Physics Department, Peking University, June 20, 2012 

18) C.Z.Ning, Composition Graded II-VI and IV-VI Nanowires for Full-Spectrum 
Optoelectronic Applications from UV to Mid-IR， InternationalWorshop on 6.1A II-VI 
and III-V Materials and Their Integration, Tempe, AZ, Nov 2011 

19) C.Z. Ning, Semiconductor Alloy Nanowires for Optoelectronics Applications from UV 
to Midinfrared, Material Science Seminar, University of Wisconsin Madison, Sept 29, 
2011 

20) C.Z. Ning, Plasmonic nanolasers with subwavelength-size cavities: progress and 
prospects, International Nano-Optoelectronics Workshop (iNOW 2011), St-Petersburg-
Wurzburg, July 26-Aug 5, 2011  

21) C.Z. Ning, Plasmonics with Semiconductors: Loss Compensation and Lasing, ICMAT 
2011, Singapore, June 29, 2011 

22) C.Z. Ning, Plasmonic Nanolasers with Sub-Wavelength-Size Cavities: Progress and 
Perspectives, International Conference on Nanophotonics, Shanghai, China, May 22-26, 
2011 

23) Cun-Zheng Ning, Derek Caselli, Ding Kang, Debin Li, Zhicheng Liu, Patricia L. Nichols, 
Minghua Sun, Leijun Yin, Nanophotonics with Plasmonics and Nanowires: 
Applications to Subwavelength Lasers and Novel Solar Cells, Villa Conference on 
Interactions Among Nanostructures, April 21-25, 2011 Las Vegas, Nevada 

24) Z. Liu, K. Ding, L. Yin, M. Hill, M.J. Marell, R.J. van Veldhoven, R. Noetzel, C. Z. Ning, 
Room Temperature CW Operation of Metal–Semiconductor Plasmonic Nanolasers 
with Subwavelength Cavity,CLEO/QELS, Baltimore, MD, May 2-6, 2011  

25) C.Z. Ning, Alloy semiconductor nanowires for optoelectronic applications from UV to 
IR, March 16, 2011, Lecture, EECS Department, UC Berkeley  

26) C.Z. Ning, Semiconductor alloy nanowires and applications to high efficiency solar 
cells, AZ Nanotech Council, Feb 24, 2011 
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27) C.Z. Ning, Nanophotonics with Plasmonics and Nanowires: Applications to 
Subwavelength Lasers and Novel Solar Cells, Symposium on Nanophotonics and 
Renewable Energy, Chinese Acandemy of Science, Institute of Physics, Jan 17-18, 2011 

28) C.Z. Ning, Approaching Size Limit of Nanolasers with Wires and Plasmonic Shells, 
ECE Colloquium, University of Illinois at Urbana Champaign, Oct 14, 2010 

 
6. Papers published under the DARPA support: 

 
[1] Ding K, Hill MT, Liu ZC, Yin LJ, Veldhoven PJV, Ning C.Z., Record performance of 

electrical injection sub-wavelength metallic-cavity semiconductor lasers at room 
temperature, Opt. Express, 21, 4728-4733(2013) 

[2] K. Ding, H. Wang, M. T. Hill, and C. Z. Ning, Design and fabrication of an electrical 
injection metallic bowtie plasmonic structure integrated with semiconductor gain 
medium, App. Phys. Lett., 102, 041110 (2013); doi: 10.1063/1.4775803 

[3] K. Ding and C.Z. Ning, Fabrication challenges of electrical injection metallic cavity 
semiconductor nanolasers (invited paper), Semicond. Sci. Technol., accepted, (2013) 

[4] C.Z. Ning, What is Laser Threshold?, (invited paper), J. Special Topics of Quantum 
Electronics, 19, 1503604 (2013) 

[5] K. Ding, M. Hill, Z.C. Liu, L. J. Yin, P. J. van Veldhoven, and C.Z. Ning, An electrical 
injection metallic cavity nanolaser with azimuthal polarization Lasers, Appl. Phys. 
Lett., 102, 041110 (2013); doi: 10.1063/1.4775803  

[6] C.Z. Ning, Nanolasers: Current Status of The Trailblazer of Synergetics, in Self-
Organization in Complex Systems: The Past, Present, and Future of Synergetics, eds. A. 
Pelster and G. Wunner, (Springer, 2013) 

[7] X. Wu, Y. Xiao, C. Meng, X. Zhang, S. Yu, Y. Wang, C. Yang, X. Gu, C. Z. Ning, L.M. 
Tong, Longitudinal hybrid photon-plasmon nanowire lasers, Nano Lett., Article 
ASAP, DOI: 10.1021/nl403325j, October 17, 2013 

[8] K. Ding and C. Z. Ning, Metallic subwavelength-cavity semiconductor nanolaser. (an 
invited review). Light: Science and Applications, 1(7),e20(2012); 
doi:10.1038/lsa.2012.20 

[9] D. Li and C.Z. Ning, Interplay of various loss mechanisms and ultimate size limit of a 
surface plasmon polariton semiconductor nanolaser, Opt. Exp., 20, 16348-16357 
(2012) 

[10] K. Ding, Z.C. Liu, L.J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, 
C.Z. Ning, Room Temperature Continuous Wave Lasing in Deep-Subwavelength 
Metallic-Cavities under Electrical Injection, Phys. Rev. B85 (Rapid Communication), 
041301(2012) 

[11] K. Ding, Zhicheng Liu, Leijun Yin, Hua Wang, Ruibin Liu, Martin T. Hill, Milan J. H. 
Marell, Peter J. van Veldhoven, Richard Nötzel, and C. Z. Ning, Electrical injection, 
continuous wave operation of subwavelength-metallic cavity lasers at 260 K, 
Kang, Appl. Phys. Lett., 98, 231108, 2011. 
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the DBR structures, a method to perform selected area spectroscopy was developed. One end of 
the nanowire is excited by a HeCd laser at 325 nm. The emission that passes through the DBR to 
the other end of the nanowire is collected by a microscope objective (Olympus 60x, N.A. 0.7, in 
an Olympus inverted optical microscope) and imaged onto a UV-visible spectroscopy 
spectrometer (Princeton Instruments/Acton) equipped with a 300-groove/mm grating blazed at 
500 nm and a liquid N2-cooled charge-coupled device. The recorded spectra are from the light 
that passes through the DBR. As shown in Fig. 2, photonic stop bands across the entire visible 
spectrum were observed by adjusting the periodicity of the DBR from 250 nm to 80 nm, the 
periodicity used to match the band gap emission wavelength. The measured FWHM of the DBR 
can be less than 10 nm, which illustrates the uniformity and the control of this fabrication 
procedure. By examining the periodicity with the position of the stop band, the effective index of 
refraction across the entire visible spectrum for the nanowire can be extracted from the 
measurement. This method can be potentially applied to other material systems. This compact, 
one-dimensional architecture is highly reproducible and is anticipated to improve the lasing 
performance of conventional nanowire lasers. 
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